

Ports Energy and Carbon Savings

WP1 Meeting – Output 3 Workshop D 1.6.2 on D 1.6.1 "Report about energy savings in ports"

Odile Lefrère & Sebastien Delhomelle - Cerema PECS – May 2019

WP1 – Outpout 3 State of affair

- D 1,5,1 General method to assess the option for energy savings in ports: complete
- D 1,5,2 Tool to calculate energy savings potential : complete
- D 1,5,3 Methodology to calculate energy savings: complete
- D 1,6,1 Report about energy savings in ports experimentation by partner ports: draft complete, sent to all partners
- D 1,6,2 Workshop about the experimentation of the method in partner ports – Now !
- D 1,6,3 General report of the method, based on D1,6,1 and D1,6,2 to be done after this meeting

WP1 – Outpout 3 State of affair

- Summary of the former events:
 - The D1,5,2 Tool to determine energy savings in ports was tested by the ports of Oostende, Hellevoetsluis, Ijmond and Portsmouth.
 - The D1,6,1 Report is the synthesis of all these feedbacks. It was sent to all partners – No remarks until now.
- What we need now :
 - The point of view of each partner (knowledge partners and ports) on the report about energy savings options

Energy savings

The results seems to allow drawing the following conclusions:

- Ports are very diverse, also regarding their potential of energy savings.
- Insulation and control devices on heating and cooling seems to be a levy common to all ports to induce energy savings, even if the efficiency of this measure is not the same for all ports.

Energy savings	Hellevoet.	Ijmond	Oostende	Porthmouth		
Lightings						
Switching for LEDs	0%	5%	2%	0%	of energy savings on electricity	
Using controls and sensors	18%	15%	0%	8%	of energy savings on electricity	
De-lamping and daylight	3%	2%	1%	1%	of energy savings on electricity	
Upsting and spaling						
Heating and cooling	1001	0.001		0.004		
Insulation	19%	28%	11%	28%	of energy savings on the heating and cooling bill	
Heating system	12%	4%	15%	0%	of energy savings on the heating bill	
Cooling system	1%	20%	0%	19%	of energy savings on the heating and cooling bill	
Control devices	10%	26%	6%	23%	of energy savings on the heating and cooling bill	
Fuels						
Reducing time in port	0-2%	0%	2%	8%	savings on fuel used by shipping operation in port	
On shore power supply	0%	95%	0%	95%	savings on fuel used by ship at berth	
Eco-driving	0-10%	0%	10%	10%	savings on fuel used by the company's vehicules	
Specific equipment						
From hydraulic to electric sprea	0%	0%	0%	0%	energy savings on energy used by spreaders	
From Diesel RTG to e-RTG	0%	0%	0%	0%	energy savings on energy used by RTG cranes	
From Diesel STS to e-STS	0%	0%	0%	0%	energy savings on energy used by STS cranes	
Installing a roof shade	0%	0%	0%	12%	energy savings on energy used by reefer containers	
Other considerations						
Potential for a district heating :	no	no	no	no		
Potential for a district cooling :	no	no	no	no		

WP1 – output 3

Weakness and difficulties

For each ports, weakness and difficulties are summarized:

Example for Oostende

Oostende

Way of using the tool

Easy to use, the experimentation is on an 1 year period (2018) and the area is limited (blue area on the map below).

Strengths

Easy to use, results are clear

Weaknesses and difficulties

The port of Oostende has about 5 significant office buildings, 9 different warehouse buildings and multiple sanitary blocks. Some were built more than 50 years ago, some are brand new. Same for the heating installations inside. It is impossible to fill only one table for all that kind of building, and making a new document for every building seems like a lot of work and will scatter the results. Maybe different tabs for office, warehouse and sanitary blocks, with in each tab the provision for e.g. 10 buildings could be an improvement of the tool.

Remarks

Energy savings at company level

To go further, Ijmond determine the potential of energy savings at company level

Relevant options

Measure	Production/savings	Investment	Yearly revenue/savings	Environmental benefit (CO ₂)
LED lighting	1.629.000 kWh/yr	€285.000	€243.000	578 tons
Solar PV	15.343.000 kWh/yr	€17.911.000	€2.429.000	5.447 tons
Heat pumps	462.000 m ³	€1.735.000	€192.000	638 tons
Roof insulation	303.000 m ³	€1.759.000	€177.000	540 tons
Façade insulation	145.000 m ³	€812.000	€85.000	259 tons
Glazing	28.000 m ³	€246.000	€17.000	50 tons
Heat recovery installation	209.000 m ³	€121.000	€121.000	371 tons

Total investment: €23.321.000 Total average payback time: 7 years Total CO2 emission reduction: 7.883 tons

Current conclusion

- Experimentation of this tool has been done in four different ports of the project, allowing to estimate the possibility and the kind of energy savings.
- In addition, the main feedback of this experimentation is the <u>difficulty to have</u> <u>data</u> or the <u>difficulties to use the tool with different kind of data available in</u> <u>different areas of the ports</u>.
- This tool should be considered as a guide to determine which global type of energy savings is possible in a port and need further investigations. Indeed, increasing the accuracy of this tool should be approached with care because of the <u>correlated rise of data collection that is the major barrier to a large</u> <u>diffusion of the tool</u>.
- The <u>Current complexity level of the tool seems to be a rather good</u> <u>compromise</u> between its ease of use and its accuracy.

Workshop

Questions to the ports:

- Could the method help you detect the best way of doing some energy savings ?
- Is the "picture" of your port quite good ? If not, what are the ways to explore to improve the tool ?

Questions to All:

- Remarks on the report ?
- Do you agree with the current conclusions?

Port ostende

With the financial support of

Hampshire County Council

GHENT

UNIVERSITY

beverwijk

Grand Port Maritime de Dunkerque

* * *

Data required from port

• For lighting:

On lighting and energy consumption		
how much energy do you use for lighting ?		kWh
if not known, how much total electricity do you used?	50000	kWh
On lighting and technologies		
What main technology do you use for outdoor lighting	Methal Halide	
What main technology do you use for indoor lighting ?	Flurorescent lamp	-
Do you have sensors and controls for lighting ?	Some	
On lighting and spacial usage		
Is there leizure activity (marina) on your port ?	A lot	
Is there commercial activities or a container terminal		
on your port?	Some	
Discribe your port:		
m ² of offices	200	m²
m ² of warehouses	2000	m²
m ² of storage area	80	m²
m ² of meeting rooms	50	m²
m ² of outside area	10000	m²
total	12330	

Data required from port

• For heating and cooling

On heating and cooling and offices		
Do you know the heating consumption of your offices ?		kWh/yr
Do you know the energy consumption of your office buildings ?		kWh/yr
(if unknown please let blank)		
m ² of offices	300	m² (ente
	more than 15	
age of the heating system (boiler or radiant electric heater)	years old	
Date of construction of the office buildings	after 2005	
is there a cooling system ?	yes	
Is there a heat pump using sea water on site ?	no	
Is there a renewable energy for heating and cooling used on site ?	no	
Is there a recent control device for heating and cooling ?	no	
Fuel used for heating	electricity	

Data required from port

• For heating and cooling

On heating and cooling and warehouses			
Do you know the heating consumption of your warehouses ?			kWh/yr
Do you know the cooling consumption of your warehouses ?			kWh/yr
(if unknown please let blank)			
m ² of warehouses (non-refrigerated)	5	000	m² (enter 0
	more than 15		
age of the heating system	years old		
Is there a recent control device for heating ?	no		
Is there a renewable energy for heating used on site ?	yes		
Fuel used for heating	electricity		
m ² of refrigerated warehouses	з	000	m² (enter 0
	more than 15		
age of the cooling system	years old		
Is there a recente control device for cooling ?	no		
Is there a renewable energy for cooling used on site ?	yes		
Fuel used for cooling	electricity		

Data required from port

• For heating and cooling

On heating and cooling and warehouses		
Do you know the heating consumption of your warehouses ?		kWh/yr
Do you know the cooling consumption of your warehouses ?		kWh/yr
(if unknown please let blank)		
m ² of warehouses (non-refrigerated)	500	00 m² (enter 0
	more than 15	
age of the heating system	years old	
Is there a recent control device for heating ?	no	
Is there a renewable energy for heating used on site ?	yes	
Fuel used for heating	electricity	
m ² of refrigerated warehouses	300	00 m² (enter 0
	more than 15	
age of the cooling system	years old	
Is there a recente control device for cooling ?	no	
Is there a renewable energy for cooling used on site ?	yes	
Fuel used for cooling	electricity	

Data required from port

• For Fuels

Reducing time in port	
Does your ports have shipping operation ?	yes
Does your port have a Maritim and Port	
Operations System (MPOS) ?	no
Shore power supply	
Do you have on shore power supply ?	no
Eco-driving	
Does your port possess service	
vehicules/trucks/mobile cranes?	yes
Does your employees have been trained in	
eco-driving?	no

Data required from port

• For specific equipment:

On cranes	[Sans titre]
Do you used mobile cranes ?	no
How many ?	1
What kind 🔀 spreader is used on the mobile	
cranes ?	Hydraulic spreaders
Do you used STS cranes ?	no
How many ?	1
Does your STS crane linked to the grid ?	no
What kind of spreader is used on the mobile	
cranes ?	Hydraulic spreaders
Do you used RTG cranes ?	yes
How many ?	2
Does your RTG cranes is linked to the grid ?	no
What kind of spreader is used on the mobile	
cranes ?	Hydraulic spreaders
On reefer containers	
Do you have reefer containers ?	yes
Do you have a roof shade for reefer containers	s? no